Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 386, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627408

RESUMO

Nicotiana benthamiana is a fundamental model organism in plant research. Recent advancements in genomic sequencing have revealed significant intraspecific genetic variations. This study addresses the pressing need for a precise genome sequence specific to its geographic origin by presenting a comprehensive genome assembly of the N. benthamiana LAB strain from the Republic of Korea (NbKLAB). We compare this assembly with the widely used NbLAB360 strain, shedding light on essential genomic differences between them. The outcome is a high-quality, chromosome-level genome assembly comprising 19 chromosomes, spanning 2,762 Mb, with an N50 of 142.6 Mb. Comparative analyses revealed notable variations, including 46,215 protein-coding genes, with an impressive 99.5% BUSCO completeness score. Furthermore, the NbKLAB assembly substantially improved the QV from 33% for NbLAB360 to 49%. This refined chromosomal genome assembly for N. benthamiana, in conjunction with comparative insights, provides a valuable resource for genomics research and molecular biology. This accomplishment forms a strong foundation for in-depth exploration into the intricacies of plant genetics and genomics, improved precision, and a comparative framework.


Assuntos
Mapeamento Cromossômico , Genoma de Planta , Nicotiana , Genômica , Nicotiana/genética , Filogenia , República da Coreia , Cromossomos de Plantas
2.
Sci Data ; 10(1): 713, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853021

RESUMO

Improvements in long read DNA sequencing and related techniques facilitated the generation of complex eukaryotic genomes. Despite these advances, the quality of constructed plant reference genomes remains relatively poor due to the large size of genomes, high content of repetitive sequences, and wide variety of ploidy. Here, we developed the de novo sequencing and assembly of high polyploid plant genome, Hibiscus syriacus, a flowering plant species of the Malvaceae family, using the Oxford Nanopore Technologies and Pacific Biosciences Sequel sequencing platforms. We investigated an efficient combination of high-quality and high-molecular-weight DNA isolation procedure and suitable assembler to achieve optimal results using long read sequencing data. We found that abundant ultra-long reads allow for large and complex polyploid plant genome assemblies with great recovery of repetitive sequences and error correction even at relatively low depth Nanopore sequencing data and polishing compared to previous studies. Collectively, our combination provides cost effective methods to improve genome continuity and quality compared to the previously reported reference genome by accessing highly repetitive regions. The application of this combination may enable genetic research and breeding of polyploid crops, thus leading to improvements in crop production.


Assuntos
Genoma de Planta , Hibiscus , Nanoporos , Hibiscus/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Melhoramento Vegetal , Poliploidia , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA